161 research outputs found

    Towards a Flexible and Evolvable Framework for Self-Adaptation

    Get PDF
    The growing complexity, scale and heterogeneity of software systems boosted a great deal of research in the field of self-management and self-adaptation. In general, current solutions are built as fixed frameworks, with rigid methodology, models and tools that are best suited for their target application domain but can not be easily applied in different domains. Furthermore, they lack the flexibility to let the developer make decisions on how the adaptation engine should work and do not consider the engine itself as a system subject to adaptation that can dynamically evolve. In this work-in-progress paper we discuss the requirements of a more flexible and evolvable framework for self-adaptation. We propose a conceptual model for realizing this framework, showing its benefits with an application scenario

    A Component-based Approach for Service Distribution in Sensor Networks

    Get PDF
    International audienceThe increasing number of distributed applications over Wireless Sensor Networks (WSNs) in ubiquitous environments raises the need for high-level mechanisms to distribute sensor services and integrate them in modern IT systems. Existing work in this area mostly focuses on low-level networking issues, and fails to provide high-level and off-the-shelf programming abstractions for this purpose. In this paper, we therefore consider WSN programming models and service distribution as two interrelated factors and we present a new component-based abstraction for integrating WSNs within existing IT systems. Our approach emphasizes on reifying distribution strategies at the software architecture level, thus allowing remote invocation of component services, and facilitating interoperability of sensor services with the Internet through Web service-enabled components. The latter is efficiently provided by incorporating the REST architectural style—emphasizing on abstraction of high-level services as resources—to our component-based framework. The preliminary evaluation results show that the proposed framework has an acceptable memory overhead on a TelosB sensor platform

    Enhancing Planning-Based Adaptation Middleware with Support for Dependability: a Case Study

    Get PDF
    Recent evolutions of mobile devices have opened up for new opportunities for building advanced mobile applications. In particular, these applications are capable of discovering and exploiting software and hardware resources that are made available in their environment. A possible approach for supporting these ubiquitous interactions consists in adapting the mobile application to reflect the functionalities that are provided by the environment. However, these approaches often fail in offering a sufficient degree of resilience to potential device, network, and software failures, which are particularly frequent in ubiquitous environments. Therefore, the contribution of this paper is to integrate the dependability concern in the process of mobile applications adaptation. In particular, we propose to reflect dependability mechanisms as alternative configurations for a given application. This reflection allows the planning-based adaptation middleware to automatically decide, based on contextual information, to enable the support for dependability or not

    RESTful Service Development for Resource-constrained Environments

    Get PDF
    International audienceThe use of resource-constrained devices, such as smartphones, PDAs, Tablet PCs, and Wireless Sensor Networks (WSNs) is spreading rapidly in the business community and our daily life. Accessing services from such devices is very common in ubiquitous environments, but mechanisms to describe, implement and distribute these services remain a major challenge. Web services have been characterized as an efficient and widely-adopted approach to overcome heterogeneity, while this technology is still heavyweight for resource-constrained devices. The emergence of REST architectural style as a lightweight and simple interaction model has encouraged researchers to study the feasibility of exploiting REST principles to design and integrate services hosted on devices with limited capabilities. In this chapter, we discuss the state-of-the-art in applying REST concepts to develop Web services for WSNs and smartphones as two representative resource-constrained platforms, and then we provide a comprehensive survey of existing solutions in this area. In this context, we report on the DIGIHOME platform, a home monitoring middleware solution, which enables efficient service integration in ubiquitous environments using REST architectural style. In particular, we target our reference platforms for homemonitoring systems, namelyWSNs and smartphones, and report our experiments in applying the concept of Component-Based Software Engineering (CBSE) in order to provide resource-efficient RESTful distribution of Web services for those platforms

    Optimizing Sensor Network Reprogramming via In-situ Reconfigurable Components

    Get PDF
    International audienceWireless reprogramming of sensor nodes is a critical requirement in long-lived Wireless Sensor Networks (WSNs) for several concerns, such as fixing bugs, upgrading the operating system and applications, and adapting applications behavior according to the physical environment. In such resource-poor platforms, the ability to efficiently delimit and reconfigure the necessary portion of sensor software--instead of updating the full binary image--is of vital importance. However, most of existing approaches in this field have not been widely adopted to date due to the extensive use of WSN resources or lack of generality. In this article, we therefore consider WSN programming models and run-time reconfiguration models as two interrelated factors and we present an integrated approach for addressing efficient reprogramming in WSNs. The middleware solution we propose, RemoWare, is characterized by mitigating the cost of post-deployment software updates on sensor nodes via the notion of in-situ reconfigurability and providing a component-based programming abstraction to facilitate the development of dynamic WSN applications. Our evaluation results show that RemoWare imposes a very low energy overhead in code distribution and component reconfiguration, and consumes approximately 6% of the total code memory on a TelosB sensor platform

    Improving Context Interpretation by Using Fuzzy Policies: The Case of Adaptive Video Streaming

    Get PDF
    Best paper awardInternational audienceAdaptation is an increasingly important requirement for software systems executing in large-scale, heterogeneous, and dynamic environments. A central aspect of the adaptation methodology is management of contextual information needed to support the adaptation process. A major design challenge of managing contextual data lies in the fact that the information is partial, uncertain, and inherently suitable for diverging interpretations. While existing adaptation solutions focus on techniques, methods, and tools, the challenge of managing and interpreting ambiguous contextual information remains largely unresolved. In this paper we present a new adaptation approach that aims to overcome these issues by applying fuzzy set theory and approximate reasoning. We have defined a knowledge management scheme that allows the interpretation of imprecise information and effectively integrated it into the adaptation feedback control loop. To test and evaluate our solution, we implemented it in an adaptation engine to perform rate control for media streaming applications. We show the benefits of our approach in terms of flexibility and performance when compared to more traditional methods, such as TCP-friendly rate control

    Educating the energy informatics specialist: opportunities and challenges in light of research and industrial trends

    Get PDF
    Contemporary energy research is becoming more interdisciplinary through the involvement of technical, economic, and social aspects that must be addressed simultaneously. Within such interdisciplinary energy research, the novel domain of energy informatics plays an important role, as it involves different disciplines addressing the socio-techno-economic challenges of sustainable energy and power systems in a holistic manner. The objective of this paper is to draw an overview of the novel domain of energy informatics by addressing the educational opportunities as well as related challenges in light of current trends and the future direction of research and industrial innovation. In this study we discuss the energy informatics domain in a way that goes beyond a purely scientific research perspective. This paper widens the analyses by including reflections on current and future didactic approaches with industrial innovation and research as a background. This paper provides key recommendations for the content of a foundational introductory energy informatics course, as well as suggestions on distinguishing features to be addressed through more specialized courses in the field. The importance of this work is based on the need for better guidelines for a more appropriate education of a new generation of experts who can take on the novel interdisciplinary challenges present in future integrated, sustainable energy systems

    Clustering objectives in wireless sensor networks: A survey and research direction analysis

    Get PDF
    Wireless Sensor Networks (WSNs) typically include thousands of resource-constrained sensors to monitor their surroundings, collect data, and transfer it to remote servers for further processing. Although WSNs are considered highly flexible ad-hoc networks, network management has been a fundamental challenge in these types of net- works given the deployment size and the associated quality concerns such as resource management, scalability, and reliability. Topology management is considered a viable technique to address these concerns. Clustering is the most well-known topology management method in WSNs, grouping nodes to manage them and/or executing various tasks in a distributed manner, such as resource management. Although clustering techniques are mainly known to improve energy consumption, there are various quality-driven objectives that can be realized through clustering. In this paper, we review comprehensively existing WSN clustering techniques, their objectives and the network properties supported by those techniques. After refining more than 500 clustering techniques, we extract about 215 of them as the most important ones, which we further review, catergorize and classify based on clustering objectives and also the network properties such as mobility and heterogeneity. In addition, statistics are provided based on the chosen metrics, providing highly useful insights into the design of clustering techniques in WSNs.publishedVersio

    A Survey and Future Directions on Clustering: From WSNs to IoT and Modern Networking Paradigms

    Get PDF
    Many Internet of Things (IoT) networks are created as an overlay over traditional ad-hoc networks such as Zigbee. Moreover, IoT networks can resemble ad-hoc networks over networks that support device-to-device (D2D) communication, e.g., D2D-enabled cellular networks and WiFi-Direct. In these ad-hoc types of IoT networks, efficient topology management is a crucial requirement, and in particular in massive scale deployments. Traditionally, clustering has been recognized as a common approach for topology management in ad-hoc networks, e.g., in Wireless Sensor Networks (WSNs). Topology management in WSNs and ad-hoc IoT networks has many design commonalities as both need to transfer data to the destination hop by hop. Thus, WSN clustering techniques can presumably be applied for topology management in ad-hoc IoT networks. This requires a comprehensive study on WSN clustering techniques and investigating their applicability to ad-hoc IoT networks. In this article, we conduct a survey of this field based on the objectives for clustering, such as reducing energy consumption and load balancing, as well as the network properties relevant for efficient clustering in IoT, such as network heterogeneity and mobility. Beyond that, we investigate the advantages and challenges of clustering when IoT is integrated with modern computing and communication technologies such as Blockchain, Fog/Edge computing, and 5G. This survey provides useful insights into research on IoT clustering, allows broader understanding of its design challenges for IoT networks, and sheds light on its future applications in modern technologies integrated with IoT.acceptedVersio
    • …
    corecore